Noise and rank-dependent geometrical filter improves sensitivity of highly specific discovery by microarrays
نویسنده
چکیده
SUMMARY MASH is a mathematical algorithm that discovers highly specific states of expression from genomic profiling by microarrays. The goal at the outset of this analysis was to improve the sensitivity of MASH. The geometrical representations of microarray datasets in the 3D space are rank-dependent and unique to each dataset. The first filter (F1) of MASH defines a zone of instability whose F1-sensitive ratios have large variations. A new filter (Fs) constructs in the 3D space rank-dependent lower and upper-bound contour surfaces, which are modeled based on the geometry of the unique noise intrinsic to each dataset. As compared with MASH, Fs increases sensitivity significantly without lowering the high specificity of discovery. Fs facilitates studies in functional genomics and systems biology.
منابع مشابه
Mathematical algorithm for discovering states of expression from direct genetic comparison by microarrays.
Highly specific direct genome-scale expression discovery from two biological samples facilitates functional discovery of molecular systems. Here, expression data from cDNA arrays are ranked and curve-fitted. The algorithm uses filters based on the derivatives (slopes) of the curve fits. The rules are set to (i) filter the largest number of artifactual ratios from same-to-same datasets and (ii) ...
متن کاملOPTIMAL SENSOR PLACEMENT FOR DAMAGE DETECTION BASED ON A NEW GEOMETRICAL VIEWPOINT
In this study, efficient methods for optimal sensor placement (OSP) based on a new geometrical viewpoint for damage detection in structures is presented. The purpose is to minimize the effects of noise on the damage detection process. In the geometrical viewpoint, a sensor location is equivalent to projecting the elliptical noise on to a face of response space which is corresponding to the sens...
متن کاملA Novel Frequency Domain Linearly Constrained Minimum Variance Filter for Speech Enhancement
A reliable speech enhancement method is important for speech applications as a pre-processing step to improve their overall performance. In this paper, we propose a novel frequency domain method for single channel speech enhancement. Conventional frequency domain methods usually neglect the correlation between neighboring time-frequency components of the signals. In the proposed method, we take...
متن کاملA Robust Image Denoising Technique in the Contourlet Transform Domain
The contourlet transform has the benefit of efficiently capturing the oriented geometrical structures of images. In this paper, by incorporating the ideas of Stein’s Unbiased Risk Estimator (SURE) approach in Nonsubsampled Contourlet Transform (NSCT) domain, a new image denoising technique is devised. We utilize the characteristics of NSCT coefficients in high and low subbands and apply SURE sh...
متن کاملAdaptive Line Enhancement Using a Parallel IIR Filter with A Step-By-step Algorithm
A step-by-step algorithm for enhancement of periodic signals that are highly corrupted by additive uncorrelated white gausian noise is proposed. In each adaptation step a new parallel second-order section is added to the previous filters. Every section has only one adjustable parameter, i.e., the center frequency of the self-tuning filter. The bandwidth and the convergence factor of each secti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bioinformatics
دوره 21 23 شماره
صفحات -
تاریخ انتشار 2005